A New Lagrange Multiplier Approach for Constructing Structure Preserving Schemes, II. Bound Preserving

نویسندگان

چکیده

In the second part of this series, we use Lagrange multiplier approach proposed in first [Comput. Methods Appl. Mech. Engr., 391 (2022), 114585] to construct efficient and accurate bound and/or mass preserving schemes for a class semilinear quasi-linear parabolic equations. We establish stability results under general setting carry out an error analysis second-order scheme with hybrid spectral discretization space. apply our several typical PDEs which preserve also present ample numerical validate approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bound-preserving high order schemes

For the initial value problem of scalar conservation laws, a bound-preserving property is desired for numerical schemes in many applications. Traditional methods to enforce a discrete maximum principle by defining the extrema as those of grid point values in finite difference schemes or cell averages in finite volume schemes usually result in an accuracy degeneracy to second order around smooth...

متن کامل

Type 2 Structure-Preserving Signature Schemes Revisited

At CRYPTO 2014, Abe, Groth, Ohkubo and Tibouchi presented genericsigner structure-preserving signature schemes using Type 2 pairings. The schemes were claimed to enjoy the smallest number of group elements in signatures and the fastest signature verification. By properly accounting for the concrete structure of the underlying group and subgroup membership testing of group elements in signatures...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Asymptotic Preserving Hll Schemes

This work concerns the derivation of HLL schemes to approximate the solutions of systems of conservation laws supplemented by source terms. Such a system contains many models such as the Euler equations with high friction or the M1 model for radiative transfer. The main difficulty arising from these models comes from a particular asymptotic behavior. Indeed, in the limit of some suitable parame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 2022

ISSN: ['0036-1429', '1095-7170']

DOI: https://doi.org/10.1137/21m144877x